A Hybrid Action-Related K-Nearest Neighbour (HAR-KNN) Approach for Recommendation Systems
نویسندگان
چکیده
منابع مشابه
k-Nearest Neighbour Classifiers
Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...
متن کاملTropical Forest Biomass Estimation and Mapping Using K-nearest Neighbour (knn) Method
Estimation and mapping of tropical forest biomass is important for periodic carbon accounting, as tropical deforestation is one of the major sources of terrestrial carbon emission in the recent decades. K-nearest neighbour (kNN) method is recently introduced for the estimation of boreal and temperate forest variables from satellite sensors and sample based inventory data. The current study is a...
متن کاملA Critical Constant for the k Nearest-Neighbour Model
Let P be a Poisson process of intensity one in a square Sn of area n. For a fixed integer k, join every point of P to its k nearest neighbours, creating an undirected random geometric graph Gn,k. We prove that there exists a critical constant ccrit such that for c < ccrit, Gn,⌊c logn⌋ is disconnected with probability tending to 1 as n → ∞, and for c > ccrit, Gn,⌊c logn⌋ is connected with probab...
متن کاملA New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملSmall components in k-nearest neighbour graphs
Let G = Gn,k denote the graph formed by placing points in a square of area n according to a Poisson process of density 1 and joining each point to its k nearest neighbours. In [2] Balister, Bollobás, Sarkar and Walters proved that if k < 0.3043 logn then the probability that G is connected tends to 0, whereas if k > 0.5139 logn then the probability that G is connected tends to 1. We prove that,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2994056